
d02 – Ordinary Differential Equations d02pzc

nag ode ivp rk errass (d02pzc)

1. Purpose

nag ode ivp rk errass (d02pzc) provides details about global error assessment computed during an
integration with either nag ode ivp rk range (d02pcc) or nag ode ivp rk onestep (d02pdc).

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_errass(Integer neq, double rmserr[], double *errmax, double *ter-
rmx,

Nag_ODE_RK *opt, NagError *fail)

3. Description

This function and its associated functions (nag ode ivp rk range (d02pcc), nag ode ivp rk onestep
(d02pdc), nag ode ivp rk setup (d02pvc), nag ode ivp rk reset tend (d02pwc), nag ode ivp rk interp
(d02pxc)) solve the initial value problem for a first order system of ordinary differential equations.
The functions, based on Runge–Kutta methods and derived from RKSUITE (Brankin et al , 1991)
integrate

y′ = f(t, y) given y(t0) = y0

where y is the vector of neq solution components and t is the independent variable.

After a call to nag ode ivp rk range (d02pcc) or nag ode ivp rk onestep (d02pdc), nag ode ivp rk errass
can be called for information about error assessment, if this assessment was specified in the setup
routine nag ode ivp rk setup (d02pvc). A more accurate “true” solution ŷ is computed in a sec-
ondary integration. The error is measured as specified in nag ode ivp rk setup (d02pvc) for local
error control. At each step in the primary integration, an average magnitude σi of component yi is
computed, and the error in the component is

| yi − ŷi |
max(σi, thres(i))

.

where thres(i) denotes the threshold value used in the error requirement, see nag ode ivp rk setup
(d02pvc).
It is difficult to estimate reliably the true error at a single point. For this reason the RMS
(root-mean-square) average of the estimated global error in each solution component is computed.
This average is taken over all steps from the beginning of the integration through to the current
integration point. If all has gone well, the average errors reported will be comparable to tol (see
nag ode ivp rk setup (d02pvc)). The maximum error seen in any component in the integration so
far and the point where the maximum error first occurred are also reported.

4. Parameters

neq
Input: the number of ordinary differential equations in the system.
Constraint: neq ≥ 1.

rmserr[neq]
Output: rmserr[i − 1] approximates the RMS average of the true error of the numerical
solution for the ith solution component yi, for i = 1, 2, . . . ,neq. The average is taken over all
steps from the beginning of the integration to the current integration point.

errmax
Output: the maximum weighted approximate true error taken over all solution components
and all steps.

[NP3275/5/pdf] 3.d02pzc.1

nag ode ivp rk errass NAG C Library Manual

terrmx
Output: the first value of the independent variable where an approximate true error attains
the maximum value, errmax.

opt
Input: the structure of type Nag ODE RK as output from nag ode ivp rk range (d02pcc) or
nag ode ivp rk onestep (d02pdc). This structure must not be changed by the user.
Output: some members of opt are changed internally.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE PREV CALL
The previous call to a function had resulted in a severe error. You must call
nag ode ivp rk setup (d02pvc) to start another problem.

NE PREV CALL INI
The previous call to the function nag ode ivp rk errass had resulted in a severe error. You
must call nag ode ivp rk setup (d02pvc) to start another problem.

NE NEQ
The value of neq supplied is not the same as that given to the set up function.

NE MISSING CALL
Previous call to nag ode ivp rk onestep (d02pdc) has not been made, hence
nag ode ivp rk errass must not be called.
Previous call to nag ode ivp rk range (d02pcc) has not been made, hence nag ode ivp rk errass
must not be called.

NE ERRASS REQ
No error assessment is available as it was not requested in the call to nag ode ivp rk setup
(d02pvc).

NE RK NOSTEP
The integrator has not actually taken any successful steps. This function must not be called
in this circumstance.

NE MEMORY FREED
Internally allocated memory has been freed by a call to nag ode ivp rk free (d02ppc) without
a subsequent call to the set up function nag ode ivp rk setup (d02pvc).

6. Further Comments

If the integration has proceeded “well” and the problem is smooth enough, stable and not too
difficult then the values returned in the arguments rmserr and errmax should be comparable to
the value of tol specified in the prior call to nag ode ivp rk setup (d02pvc).

6.1. Accuracy

Not applicable.

6.2. References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: a suite of Runge–Kutta codes for
the initial value problem for ODEs SoftReport 91-S1, Department of Mathematics, Southern
Methodist University, Dallas, TX 75275, U.S.A.

7. See Also

nag ode ivp rk setup (d02pvc)
nag ode ivp rk onestep (d02pdc)
nag ode ivp rk range (d02pcc)

3.d02pzc.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pzc

8. Example

We integrate a two body problem. The equations for the coordinates (x(t), y(t)) of one body as
functions of time t in a suitable frame of reference are

x′′ =
−x

r3
y′′ =

−y

r3
, r =

√
(x2 + y2).

The intial conditions

x(0) = 1− ε, x′(0) = 0 y(0) = 0, y′(0) =

√
1 + ε

1− ε

lead to elliptic motion with 0 < ε < 1. We select ε = 0.7 and repose as

y′
1 = y2

y′
2 = y4

y′
3 = −y1

r3

y′
4 = −y1

r3

over the range [0, 3π]. We use relative error control with threshold values of 1.0e−10 for each solution
component and a high order Runge–Kutta method (method = Nag RK 7 8) with tolerance tol =
1.0e−6. The value of π is obtained by using X01AAC.

Note, for illustration purposes we select to integrate to the end of the range regardless of efficiency
concerns.

8.1. Program Text

/* nag_ode_ivp_rk_errass(d02pzc) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef NAG_PROTO
static void f(Integer neq, double t1, double y[], double yp[], Nag_User *comm);
#else
static void f();
#endif

#define NEQ 4
#define ZERO 0.0
#define ONE 1.0
#define THREE 3.0
#define ECC 0.7

main()
{
double hstart, pi, tgot, tend,tol, tstart, twant;
double errmax, terrmx;
Integer neq, i;
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_User comm;
Nag_RK_method method;
static NagError fail;

double thres[NEQ], ygot[NEQ], ypgot[NEQ], ystart[NEQ];
double ymax[NEQ], rmserr[NEQ];

[NP3275/5/pdf] 3.d02pzc.3

nag ode ivp rk errass NAG C Library Manual

Vprintf("d02pzc Example Program Results\n");

/* Set initial conditions and input for d02pvc */
neq = NEQ;
pi = X01AAC;
tstart = ZERO;
ystart[0] = ONE - ECC;
ystart[1] = ZERO;
ystart[2] = ZERO;
ystart[3] = sqrt((ONE+ECC)/(ONE-ECC));
tend = THREE*pi;
for (i=0; i<neq; i++)

thres[i] = 1.0e-10;
errass = Nag_ErrorAssess_on;
hstart = ZERO;
tol = 1.0e-6;
method = Nag_RK_7_8;
d02pvc(neq, tstart, ystart, tend, tol, thres, method,

Nag_RK_range, errass, hstart, &opt, NAGERR_DEFAULT);

Vprintf("\nCalculation with tol = %8.1e\n\n",tol);
Vprintf(" t y1 y2 y3 y4\n\n");
Vprintf("%8.3f %8.4f %8.4f %8.4f %8.4f\n", tstart, ystart[0],

ystart[1], ystart[2], ystart[3]);

twant = tend;
do

d02pcc(neq, f, twant, &tgot, ygot, ypgot, ymax, &opt, &comm,
&fail);

while (fail.code==NE_RK_PDC_POINTS || fail.code==NE_STIFF_PROBLEM);

if (fail.code != NE_NOERROR)
{
Vprintf("%s\n", fail.message);
exit(EXIT_FAILURE);

}
else

{
Vprintf("%8.3f %8.4f %8.4f %8.4f %8.4f\n\n", tgot, ygot[0],

ygot[1], ygot[2], ygot[3]);
d02pzc(neq, rmserr, &errmax, &terrmx, &opt, NAGERR_DEFAULT);
Vprintf ("Componentwise error assessment\n ");
for (i=0; i<neq; i++)
Vprintf("%9.2e ", rmserr[i]);

Vprintf("\n\n");
Vprintf("Worst global error observed was %9.2e - \

it occurred at t = %6.3f\n\n", errmax, terrmx);
Vprintf("Cost of the integration in evaluations of f is %ld\n",

opt.totfcn);
}

d02ppc(&opt);
exit(EXIT_SUCCESS);

}

#ifdef NAG_PROTO
static void f(Integer neq, double t, double y[], double yp[], Nag_User *comm)
#else

static void f(neq, t, y, yp, comm)
Integer neq;
double t;
double y[], yp[];
Nag_User *comm;

#endif

{
double r, rp3 ;

r = sqrt(y[0]*y[0]+y[1]*y[1]);

3.d02pzc.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pzc

rp3 = pow(r, 3.0);
yp[0] = y[2];
yp[1] = y[3];
yp[2] = -y[0]/rp3;
yp[3] = -y[1]/rp3;

}

8.2. Program Data

None.

8.3. Program Results

d02pzc Example Program Results

Calculation with tol = 1.0e-06

t y1 y2 y3 y4

0.000 0.3000 0.0000 0.0000 2.3805
9.425 -1.7000 0.0000 0.0000 -0.4201

Componentwise error assessment
3.81e-06 7.10e-06 6.92e-06 2.10e-06

Worst global error observed was 3.43e-05 - it occurred at t = 6.302

Cost of the integration in evaluations of f is 1361

[NP3275/5/pdf] 3.d02pzc.5

